国语精品91自产拍在线观看二区_色偷偷五月天_天天射夜夜爽_99久久免费国产特黄_1717国产精品久久

三角形內(nèi)角和教學(xué)設(shè)計

時間:2024-10-04 19:56:12 設(shè)計 我要投稿

三角形內(nèi)角和教學(xué)設(shè)計集錦15篇

  作為一名專為他人授業(yè)解惑的人民教師,就難以避免地要準(zhǔn)備教學(xué)設(shè)計,借助教學(xué)設(shè)計可以更好地組織教學(xué)活動。怎樣寫教學(xué)設(shè)計才更能起到其作用呢?下面是小編精心整理的三角形內(nèi)角和教學(xué)設(shè)計,希望能夠幫助到大家。

三角形內(nèi)角和教學(xué)設(shè)計集錦15篇

三角形內(nèi)角和教學(xué)設(shè)計1

  教學(xué)目標(biāo):

  1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學(xué)研究方法。

  教學(xué)重點:

  1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  教學(xué)難點:掌握探究方法(猜想-驗證-歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。

  教學(xué)用具:表格、課件。

  學(xué)具準(zhǔn)備:各種三角形、剪刀、量角器。

  一、創(chuàng)設(shè)情境揭示課題。

  1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的內(nèi)角和一定比你大!。誰說得有道理呢?今天讓我們來做一回裁判吧。

  生1:大三角形大(個子大)

  生2:小三角形大(有鈍角)

  (教師不做判斷,讓學(xué)生帶著問題進(jìn)入新課)

  2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)

  講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

  二、自主探究,合作交流。

 。ㄒ唬┨岢鰡栴}:

  1、你認(rèn)為誰說得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?

  生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。

  生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

  生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

 。ǘ┨剿髋c發(fā)現(xiàn)

  活動一:量一量

  (1)①了解活動要求:(屏幕顯示)

  A、在練習(xí)本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標(biāo)注。(測量時要認(rèn)真,力求準(zhǔn)確)

  B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。

  C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?

 。ㄒ龑(dǎo)生回顧活動要求)

 、谛〗M合作。

 、蹍R報交流。

  你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?

 。ㄒ龑(dǎo)學(xué)生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)

 。2)提出猜想

  剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)

  活動二:拼一拼,驗證猜想

  這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

  引導(dǎo):180°,跟我們學(xué)過的什么角有關(guān)?我們課前準(zhǔn)備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?

 。1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。

 。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?

 。3)分組匯報,討論質(zhì)疑

 。4)課件演示,驗證結(jié)果

  活動三:折一折

  師生一起活動,教師先讓學(xué)生看課件演示,然后拿出準(zhǔn)備好的.三角形紙艮老師一起折一折。

 。ò讶切蔚慕1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于180°,)。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?

  提問:還有沒有其它的方法?

  3、回顧兩種方法,歸納總結(jié),得出結(jié)論。

 。1)引導(dǎo)學(xué)生得出結(jié)論。

  孩子們,三角形內(nèi)角和到底等于多少度呢?”

  學(xué)生答:“180°!”

  (2)總結(jié)方法,齊讀結(jié)論

  我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼疲↓R讀結(jié)論。(板書:得到結(jié)論)

 。3)解釋測量誤差

  為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?

  那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°

 。ㄈ┗仡檰栴}:

  現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對!)

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內(nèi)角和等于1800180°。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數(shù)學(xué)書28頁第3題

  ∠A=180°-90°-30°

  2、練一練:數(shù)學(xué)書29頁第一題(生獨立解決)

  ∠A=180°-75°-28°

  3、小法官:數(shù)學(xué)書29頁第二題

  四、回顧課堂,滲透數(shù)學(xué)方法。

  1、總結(jié):猜想—驗證—歸納—應(yīng)用的數(shù)學(xué)方法。

  2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動:探索——多邊形內(nèi)角和

  板書設(shè)計:

  探索與發(fā)現(xiàn)(一)

  三角形內(nèi)角和等于180°

三角形內(nèi)角和教學(xué)設(shè)計2

  設(shè)計思路

  本節(jié)課我先引導(dǎo)學(xué)生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再引導(dǎo)學(xué)生通過折角的方法也發(fā)現(xiàn)這個結(jié)論,由此獲得三角形的內(nèi)角和是180°的結(jié)論。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼、折等活動,讓學(xué)生探索、實驗、發(fā)現(xiàn)、推理歸納出三角形的內(nèi)角和是180°。

  最后讓學(xué)生運用結(jié)論解決實際問題,練習(xí)的安排上,注意練習(xí)層次性和趣味性,還設(shè)計了開放性的練習(xí),由一個同學(xué)出題,其它同學(xué)回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角,有唯一的答案。給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學(xué)生在游戲中拓展學(xué)生思維。

  教學(xué)目標(biāo)

  1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。

  2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。

  3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點

  讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。

  教學(xué)準(zhǔn)備

  教具:多媒體課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。

  學(xué)具:三角形

  教學(xué)過程

  一、引入

  (一)認(rèn)識三角形的內(nèi)角及三角形的內(nèi)角和

  師:我們已經(jīng)學(xué)習(xí)了三角形的分類,誰能說說老師手上的是什么三角形?

  師:今天我們來學(xué)習(xí)新的知識《三角形內(nèi)角和》,誰能說說哪些角是三角形的內(nèi)角?(讓學(xué)生邊說邊指出來)

  師:那三角形的內(nèi)角和又是什么意思?(把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。)

 。ǘ┰O(shè)疑,激發(fā)學(xué)生探究新知的心理

  師:請同學(xué)們幫老師畫一個三角形,能做到嗎?(激發(fā)學(xué)生主動學(xué)習(xí)的心理)

  生:能。

  師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

  師:有誰畫出來啦?

  生1:不能畫。

  生2:只能畫兩個直角。

  生3:……

  師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、動手操作,探究三角形內(nèi)角和

 。ㄒ唬┎乱徊。

  師:猜一猜三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

  生1:180°。

  生2:不一定。

  ……

 。ǘ┎僮、驗證三角形內(nèi)角和是180°。

  1、量一量三角形的內(nèi)角

  動手量一量自己手中的三角形的內(nèi)角度數(shù)。

  師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

  生:可以先量出每個內(nèi)角的度數(shù),再加起來。

  師:哦,也就是測量計算,是嗎?

  學(xué)生匯報結(jié)果。

  師:請匯報自己測量的結(jié)果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  2、拼一拼三角形的`內(nèi)角

  學(xué)生操作

  師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。

  師:怎樣才能把三個內(nèi)角放在一起呢?(學(xué)生操作)

  生:把它們剪下來放在一起。

  師:很好。

  匯報驗證結(jié)果。

  師:通過拼合我們得出什么結(jié)論?

  生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。

  生2:直角三角形的內(nèi)角和也是180°。

  生3:鈍角三角形的內(nèi)角和還是180°。

  課件演示驗證結(jié)果。

  師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)

  師:我們可以得出一個怎樣的結(jié)論?

  生:三角形的內(nèi)角和是180°。

 。ń處煱鍟喝切蔚膬(nèi)角和是180°學(xué)生齊讀一遍。)

  師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?

  生1:量的不準(zhǔn)。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

  3、折一折三角形的內(nèi)角

  師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內(nèi)角和是180°。

  如果學(xué)生說不出來,教師便提示或示范。

  學(xué)生操作

  4、小結(jié):三角形的內(nèi)角和是180°。

  三、解決疑問。

  師:現(xiàn)在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學(xué)生體驗成功的喜悅)

  生:因為三角形的內(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。

  師:在一個三角形中,有沒有可能有兩個鈍角呢?

  生:不可能。

  師:為什么?

  生:因為兩個銳角和已經(jīng)超過了180°。

  師:那有沒有可能有兩個銳角呢?

  生:有,在一個三角形中最少有兩個內(nèi)角是銳角。

  四、應(yīng)用三角形的內(nèi)角和解決問題。

  1、下面說法是否正確。

  鈍角三角形的內(nèi)角和一定大于銳角三角形的內(nèi)角和。()

  在直角三角形中,兩個銳角的和等于90度。()

  在鈍角三角形中兩個銳角的和大于90度。()

 、芤粋三角形中不可能有兩個鈍角。()

 、萑切沃杏幸粋銳角是60度,那么這個三角形一定是個銳角三角形。()

  2、看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學(xué)信息很淺顯)

  3、游戲鞏固。

  由一個同學(xué)出題,其它同學(xué)回答。

 。1)給出三角形兩個內(nèi)角,說出另外一個內(nèi)角(有唯一的答案)。

  (2)給出三角形一個內(nèi)角,說出其它兩個內(nèi)角(答案不唯一,可以得出無數(shù)個答案)。

  4、根據(jù)所學(xué)的知識算出四邊形、正五邊形、正六邊形的內(nèi)角和。

  五、全課總結(jié)。

  今天你學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺學(xué)得怎么樣?

  反思:

  在本節(jié)課的學(xué)習(xí)活動過程中,先讓學(xué)生進(jìn)行測量、計算,但得不到統(tǒng)一的結(jié)果,再引導(dǎo)學(xué)生用把三個角拼在一起得到一個平角進(jìn)行驗證。這時,有部分學(xué)生在拼湊的過程中出現(xiàn)了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。再引導(dǎo)學(xué)生用折三角形的方法也能驗證三角形的內(nèi)角和是180°。練習(xí)設(shè)計也具有許多優(yōu)點,注意到練習(xí)的梯度,并由淺入深,照顧到不同層次學(xué)生的需求,也很有趣味性。在整個教學(xué)設(shè)計中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  但因為是借班上課,對學(xué)生了解不多,學(xué)生前面的內(nèi)容(三角形的特性和分類)還沒學(xué)好,所以有些練習(xí)學(xué)生就沒有預(yù)想的那么得心應(yīng)手,如:知道等腰三角形的頂角求底角的題,學(xué)生掌握比較困難。

三角形內(nèi)角和教學(xué)設(shè)計3

  設(shè)計思路

  遵循由特殊到一般的規(guī)律進(jìn)行探究活動是這節(jié)課設(shè)計的主要特點之一。學(xué)生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進(jìn)一步驗證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。

  最后讓學(xué)生運用結(jié)論解決實際問題,練習(xí)的安排上,注意練習(xí)層次,共安排三個層次,逐步加深。練習(xí)形式具有趣味性,激發(fā)了學(xué)生主動解題的積極性。第一個練習(xí)從知識的直接應(yīng)用到間接應(yīng)用,數(shù)學(xué)信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學(xué)生是否掌握所學(xué)知識應(yīng)該達(dá)到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個練習(xí)設(shè)計了開放性的練習(xí),在小組內(nèi)完成。由一個同學(xué)出題,其它三個同學(xué)回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓(xùn)練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個教學(xué)設(shè)計中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  教學(xué)目標(biāo)

  1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。

  2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。

  3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

  教材分析

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣。

  因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

  教學(xué)重點

  讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的.形成、發(fā)展和應(yīng)用的全過程。

  教學(xué)準(zhǔn)備

  多媒體課件、學(xué)具。

  教學(xué)過程

  一、激趣引入

  (一)認(rèn)識三角形內(nèi)角

  師:我們已經(jīng)認(rèn)識了什么是三角形,誰能說出三角形有什么特點?

  生1:三角形是由三條線段圍成的圖形。

  生2:三角形有三個角

  師:請看屏幕(課件演示三條線段圍成三角形的過程)。

  師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)

 。ǘ┰O(shè)疑,激發(fā)學(xué)生探究新知的心理

  師:請同學(xué)們幫老師畫一個三角形,能做到嗎?(激發(fā)學(xué)生主動學(xué)習(xí)的心理)

  生:能。

  師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

  師:有誰畫出來啦?

  生1:不能畫。

  生2:只能畫兩個直角。

  生3:只能畫長方形。

  師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

  師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

  生:想。

  師:那就讓我們一起來研究吧!

 。ń沂久埽擅钜胄轮奶骄浚

  二、動手操作,探究新知

 。ㄒ唬┭芯刻厥馊切蔚膬(nèi)角和

  師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)

  生:90°、60°、30°。(課件演示:由三角板抽象出三角形)

  師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

  生:是180°。

  師:你是怎樣知道的?

  生:90°+60°+30°=180°。

  師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

  師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

  生:90°+45°+45°=180°。

  師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?

  生1:這兩個三角形的內(nèi)角和都是180°。

  生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

 。ǘ┭芯恳话闳切蝺(nèi)角和

  1、猜一猜。

  師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

  生1:180°。

  生2:不一定。

  2、操作、驗證一般三角形內(nèi)角和是180°。

  (1)小組合作、進(jìn)行探究。

  師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

  生:可以先量出每個內(nèi)角的度數(shù),再加起來。

  師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

  師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務(wù)。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導(dǎo)學(xué)生選擇解決問題的策略,進(jìn)行合理分工,提高效率。)

 。2)小組匯報結(jié)果。

  師:請各小組匯報探究結(jié)果。

  生1:180°。

  生2:175°。

  生3:182°。

 。ㄈ├^續(xù)探究

  師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。

  師:怎樣才能把三個內(nèi)角放在一起呢?

  生:把它們剪下來放在一起。

  1、用拼合的方法驗證。

  師:很好,請用不同的三角形來驗證。

  師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務(wù),開始吧。

  2、匯報驗證結(jié)果。

  師:先驗證銳角三角形,我們得出什么結(jié)論?

  生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。

  生2:直角三角形的內(nèi)角和也是180°。

  生3:鈍角三角形的內(nèi)角和還是180°。

  3、課件演示驗證結(jié)果。

  師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)

  師:我們可以得出一個怎樣的結(jié)論?

  生:三角形的內(nèi)角和是180°。

 。ń處煱鍟喝切蔚膬(nèi)角和是180°學(xué)生齊讀一遍。)

  師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?

  生1:量的不準(zhǔn)。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

三角形內(nèi)角和教學(xué)設(shè)計4

  學(xué)情分析:

  學(xué)生已經(jīng)掌握了角的概念、角的分類和角的度量等知識。在本課之前,學(xué)生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進(jìn)一步研究三角形內(nèi)角和作了知識儲備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關(guān)系,是進(jìn)一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。

  教學(xué)目標(biāo):

  1、知識與技能:通過操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。

  2、過程與方法:通過量一量、剪一剪、拼一拼,培養(yǎng)學(xué)生的合作能力、動手實踐能力,并運用新知識解決問題的能力。

  3、情感態(tài)度:使學(xué)生體驗數(shù)學(xué)學(xué)習(xí)成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點:

  探索發(fā)現(xiàn)和驗證三角形的內(nèi)角和是180度。

  教學(xué)難點:

  對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。

  教具準(zhǔn)備:

  教師準(zhǔn)備:多媒體課件、不同類形大小不一的三角形若干個、記錄表

  學(xué)生準(zhǔn)備:量角器、直尺、剪刀

  教學(xué)過程:

  一、激趣導(dǎo)入

  多媒體展示三角形

  出示謎語:形狀似座山,穩(wěn)定性能堅

  三竿首尾連,學(xué)問不簡單?????(打一圖形名稱)

  (預(yù)設(shè):三角形)

  師:誰能介紹介紹三角形?

 。ㄉ1:三角形有三條邊、三個頂點、三個角。

  生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)

  師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)

  師:同學(xué)們會畫三角形嗎?請你在練習(xí)本上畫一個你喜歡的三角形。

  師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。

  師:今天我們就來研究一下三角形的內(nèi)角和。

  二、學(xué)習(xí)目標(biāo)

  1、通過動手操作,使學(xué)生理解并掌握三角形內(nèi)角和是180度的結(jié)論。

  2、能運用三角形的內(nèi)角和是180度這一規(guī)律,求三角形中未知角的度數(shù)。

  3、培養(yǎng)動手動腦及分析推理能力。

  三、自主學(xué)習(xí)(展示量角法)

  1.理解三角形的內(nèi)角、內(nèi)角和

 。1)板書展示三角形

  師:要想知道什么是三角形的內(nèi)角和,我們得先知道什么是三角形的內(nèi)角?(三角形里面的三個角都是三角形的內(nèi)角。)

  師:你能過來指指嗎?同意嗎?內(nèi)角有幾個?

  師:為了研究方便,我們把三角形的三個內(nèi)角分別標(biāo)上∠1、∠2、∠3。

  師:你能像老師一樣把你的三角形標(biāo)上∠1、∠2、∠3嗎?

 。2)三角形的內(nèi)角和

  師:什么是三角形的內(nèi)角和?

 。ㄈ切稳齻角的度數(shù)的和,就是三角形的內(nèi)角和,即:∠1+∠2+∠3)

  師:就是把∠1+∠2+∠3加起來。

  師:根據(jù)我們以前的經(jīng)驗,我們怎么知道∠1、∠2、∠3的度數(shù)呢?(預(yù)設(shè):用量角器量)

  師:請同學(xué)們拿出量角器,量一量你畫的三角形的三個內(nèi)角,并算出他們的和。(4分鐘)

  學(xué)生測量(1分40)匯報結(jié)果(5人)。

  教師填寫測量匯報單。

  師:觀察匯報的結(jié)果,你有什么發(fā)現(xiàn)?(所有三角形內(nèi)角和度數(shù)不一樣、三角形內(nèi)角和都在180度左右)

  四、合作探究

  師:這是同學(xué)們親自測量發(fā)現(xiàn)的,沒有得到統(tǒng)一的結(jié)果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現(xiàn)在請你們以小組為單位,拿出三角形來研究研究三角形的內(nèi)角和到底是多少度。?(8分鐘)(剪拼法)

  1、操作驗證探索三角形內(nèi)角和的規(guī)律(6分鐘)

 。1)操作驗證:小組合作

  拿出裝有學(xué)具的信封[信封里面有老師為學(xué)生事先準(zhǔn)備的各種類型的三角形若干個(小組之間的.三角形大小都不同)];拿出自備的直尺?剪刀

 。ɡ蠋熞o學(xué)生充裕的時間,保證學(xué)生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

  2、學(xué)生匯報

  (1)轉(zhuǎn)化法:

  生:兩個同樣的直角三角形可以拼成一個長方形,長方形每個直角都是90度,內(nèi)角和就是360度,所以三角形的內(nèi)角和就是360度的一半180度。

  師:他們用長方形的內(nèi)角和來研究今天所學(xué)的知識,得到三角形的內(nèi)角和是180度。

  (2)折拼法

  生:把三角形三個內(nèi)角分別向下邊折疊,拼成了一個平角,平角是180度,所以三角形的內(nèi)角和是180度。

  師:他們是用折拼法驗證三角形的內(nèi)角和是180度(動手能力真強)

 。3)剪拼法

  生:把三角形三個內(nèi)角撕下來,拼成一個平角,平角是180,所以三角形的內(nèi)角和是180度。(師:提問怎樣能很快的找到三個角?把他們做上標(biāo)記。)

  標(biāo)記上之后再拼一拼,可見標(biāo)記的方法很科學(xué)。(20分鐘)

  3、教師演示

  師:我們再來感受一下怎么驗證三角形的內(nèi)角和的?

  師:這是什么三角形?把他折一折。

  師:這是什么三角形?我們也可以把他折一折。你有什么發(fā)現(xiàn)?(折完以后都有一個平角,平角是180度,所以三角形的內(nèi)角和是180度)

  師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內(nèi)角和。

  師:注意觀察。

  師:演示完畢有什么發(fā)現(xiàn)?(預(yù)設(shè)這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內(nèi)角和是180度。

  師:剛剛我們研究了什么三角形。他們的內(nèi)角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)

  4、演示任意一個三角形的內(nèi)角和都是180度。

  出示一些三角形,讓學(xué)生指出內(nèi)角和。

  師:你有什么發(fā)現(xiàn)?(無論是什么樣的三角形他的內(nèi)角和都是180度,與三角形的形狀大小沒有關(guān)系。)(板書三角形的內(nèi)角和是180度。)

  師:那我們再看看剛剛匯報的結(jié)果。為什么之前測量的時候并沒有得到這樣得到結(jié)果呢?(測量的不夠精確,存在誤差)

  師:如果測量儀器再精密一些,測量的更準(zhǔn)確一些都可以得到三角形內(nèi)角和是180度,F(xiàn)在確定這個結(jié)論了嗎?(25分鐘)

  師:除了這節(jié)課大家想到的方法,還有很多方法也能證明三角形的內(nèi)角和是180°到初中我們還有更嚴(yán)密的方法證明三角形的內(nèi)角和是180°。早在300多年前就有一位法國著名的科學(xué)家帕斯卡,他在12歲時就驗證了任何三角形的內(nèi)角和都是180°

  師:你們能用今天的發(fā)現(xiàn)做一些練習(xí)嗎?

  五、測評反饋

  1、判斷。

 。1)直角三角形的兩個銳角的和是90°。

 。2)一個等腰三角形的底角可能是鈍角。

 。3)三角形的內(nèi)角和都是180°,與三角形的大小無關(guān)。

  4、剪一剪。

  把一個三角形紙板沿直線剪一刀,剩下的紙板的內(nèi)角和是多少度?

  六、課后作業(yè)

  69頁第1題、第3題。

  七、板書設(shè)計

三角形內(nèi)角和教學(xué)設(shè)計5

  【教材內(nèi)容】:

  北師大版四年級數(shù)學(xué)下冊

  【教學(xué)目標(biāo)】:

  1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。

  2、培養(yǎng)學(xué)生動手操作和合作交流的能力,促進(jìn)掌握學(xué)習(xí)數(shù)學(xué)的方法。

  3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。

  【教學(xué)重點和難點】:

  重點掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。

  【教材分析】

  《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進(jìn)一步研究,探索三個內(nèi)角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行進(jìn)行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學(xué)生認(rèn)識圖形的一般規(guī)律從直觀感性的認(rèn)識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學(xué)生的空間觀念。

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境,激發(fā)興趣。

  出示課件,提出兩個兩個疑問:

  1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?

  2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內(nèi)角和各不相同,是這樣的嗎?老師發(fā)現(xiàn)它們爭論的焦點是三角形的內(nèi)角和的問題,那什么是三角形的內(nèi)角?什么又是三角形的內(nèi)角和呢?

  二、初建模型,實際驗證自己的猜想

  在第一步的基礎(chǔ)上學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學(xué)生進(jìn)行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進(jìn)行交流。

  三角形的形狀

  三角形每個內(nèi)角的度數(shù)

  內(nèi)角和

  銳角三角形

  鈍角三角形

  直角三角形

  等腰三角形

  等邊三角形

  三、再建模型,徹底的'得出正確的結(jié)論

  因為在上一環(huán)節(jié)學(xué)生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學(xué)生去思考、去動手操作,對有困難和有疑問的同學(xué)進(jìn)行提示和指導(dǎo)。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進(jìn)行演示。

  四、應(yīng)用新知,鞏固練習(xí)

  1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習(xí))

  2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)

  3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。

  4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內(nèi)角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內(nèi)角和是360度,對嗎?

  五、拓展與延伸

  通過三角形的內(nèi)角和是180度的事實來探討四邊形、五邊行的內(nèi)角和。

三角形內(nèi)角和教學(xué)設(shè)計6

  【教學(xué)目標(biāo)】

  1、學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

  2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學(xué)重點】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。

  【教學(xué)難點】對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。

  【教具準(zhǔn)備】課件、表格、學(xué)生準(zhǔn)備不同類型的三角形各一個,量角器。

  【教學(xué)過程】

  一、激趣引入。

  1、猜謎語

  師:同學(xué)們喜歡猜謎語嗎?

  生:喜歡。

  師:那么,下面老師給大家出個謎語。請聽謎面:

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單。(打一圖形)大家一起說是什么?

  生:三角形

  2、介紹三角形按角的分類

  師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

  師分別出示卡片貼于黑板。

  3、激發(fā)學(xué)生探知心里

  師:大家會不會畫三角形?

  生:會

  師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

  生:試著畫

  師:畫出來沒有?

  生:沒有

  師:畫不出來了,是嗎?

  生:是

  師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學(xué)習(xí)有關(guān)三角形角的知識“三角形內(nèi)角和”(板書課題)

  二、探究新知。

  1、認(rèn)識三角形的內(nèi)角

  看看這三個字,說說看,什么是三角形的內(nèi)角?

  生:就是三角形里面的角。

  師:三角形有幾個內(nèi)角?

  生:3個。

  師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標(biāo)上角1角2角3,請同學(xué)們也拿出桌子上三角形標(biāo)出(教師標(biāo)出)

  師:你知道什么是三角形“內(nèi)角和”嗎?

  生:三角形里面的角加起來的度數(shù)。

  2、研究特殊三角形的內(nèi)角和

  師:分別拿出一個直角三角板,請同學(xué)們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學(xué)習(xí)過的什么角?

  生:平角

  師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

  3、研究一般三角形的`內(nèi)角和

  師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

  生:

  4、操作、驗證

  師:同學(xué)們猜的結(jié)果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

  要求:

 。1)每4人為一個小組。

 。2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務(wù)?

  (3)驗證的方法不只一種,同學(xué)們要多動動腦子。

  師:好,開始活動!

  師:巡視指導(dǎo)

  師:好!請一組匯報測量結(jié)果。

  生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

  師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結(jié)果不準(zhǔn)確。

  生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個平角,是180度。

  師:好!非常好!

  師:有其它同學(xué)操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。

  師:老師也做了一個實驗看一看是不是和大家得到結(jié)果一樣呢?(多媒體展示)

  現(xiàn)在老師問同學(xué)們,三角形的內(nèi)角和是多少?

  生:180度。

  師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  三、解決疑問

  師:好!請同學(xué)們回憶一下,剛才課前老師讓同學(xué)們畫出有兩個直角的三角形畫出來了嗎?

  生:沒有

  師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

  生:兩個直角是180度,沒有第三個角了。

  師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

  生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

  師:學(xué)會了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

 。1)三角形的內(nèi)角和是()度。

  (2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。

  2、求下面各角的度數(shù)。

 。1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

 。2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

  3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。

 。1)80° 95° 5°( )

 。2)60° 70° 90°( )

 。3)30° 40° 50°( )

  4、紅領(lǐng)巾是一個等腰三角形,求底角的度數(shù)。(多媒體出示)

  對學(xué)生進(jìn)行思品教育。

  5、思考延伸。

  根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、總結(jié)。

三角形內(nèi)角和教學(xué)設(shè)計7

  教材內(nèi)容:

  北師大版義務(wù)教育課程標(biāo)準(zhǔn)實驗教材四年級下冊。

  教學(xué)目標(biāo):

  1、經(jīng)歷觀察、猜想、實驗、驗證等數(shù)學(xué)活動,探索并發(fā)現(xiàn)三角形的內(nèi)角和180°。在實驗活動中,體驗探索的過程和方法。

  2、掌握三角形內(nèi)角和是180°這一性質(zhì),并能應(yīng)用這一性質(zhì)解決一些簡單的問題。

  3、經(jīng)歷探究過程,發(fā)展推理能力,感受數(shù)學(xué)的邏輯美。

  教學(xué)難點、重點:經(jīng)歷觀察、猜想、實驗、驗證等數(shù)學(xué)活動,探索并發(fā)現(xiàn)三角形的內(nèi)角和規(guī)律。

  教具準(zhǔn)備:直角三角形、銳角三角形、鈍角三角形各3個,大三角形、小三角形各1個。

  學(xué)具準(zhǔn)備:直角三角形、銳角三角形、鈍角三角形各3個。

  教學(xué)設(shè)計意圖:

  “三角形的內(nèi)角和180°”是三角形的一個重要性質(zhì),教材通過多種方法的操作實驗,讓學(xué)生確信這一個性質(zhì)的正確性。根據(jù)學(xué)生已有的知識經(jīng)驗和教材的內(nèi)容特點,本著“學(xué)生的數(shù)學(xué)學(xué)習(xí)過程是一個自主構(gòu)建自己對數(shù)學(xué)知識的理解過程”的教學(xué)理念,采用探究式教學(xué)方式,讓學(xué)生經(jīng)歷觀察、猜想、實驗、反思等數(shù)學(xué)活動,體驗知識的形成過程。整個教學(xué)設(shè)計力求改變學(xué)生的學(xué)習(xí)方式,突出學(xué)生的主體性。在教師的組織引導(dǎo)下,讓學(xué)生在開放的學(xué)習(xí)過程中,自始至終處于積極狀態(tài),主動參與學(xué)習(xí)過程,自主地進(jìn)行探索與發(fā)現(xiàn),多角度和多樣化地解決問題,從而實現(xiàn)知識的自我建構(gòu),掌握科學(xué)研究的方法,形成實事求事的科學(xué)探究精神。

  教學(xué)過程:

  活動一:設(shè)疑激趣

  師:我們已經(jīng)認(rèn)識了三角形,關(guān)于三角形你知道了什么?

  生1:三角形有3條邊、3個角。

  生2:三角形按角分可以分為銳角三角形、直角三角形、鈍角三角形;三角形按邊分可以分為等腰三角形和不等邊三角形。

  生3:每種三角形都至少有兩個銳角。

  師:三角形有3個角,這3個角又叫三角形的內(nèi)角。三角形按內(nèi)角的不同分為銳角三角形、直角三角形、鈍角三角形。

  師:能不能畫一個含有兩個直角或兩個鈍角的三角形呢?為什么?

  生1:我試著畫過,畫不出來。

  生2:因為每個三角形至少有兩個銳角,所以不可能畫出含有兩個直角或兩個鈍角的三角形。

  生3:三角形的內(nèi)角和是180°,兩個直角的和已經(jīng)是180°,所以不可能。

  師:你能解釋一下什么是“三角形的內(nèi)角和”嗎?你是怎樣知道“三角形的內(nèi)角和是180°”的?

  生:把三角形的三個內(nèi)角的度數(shù)相加就是三角形的內(nèi)角和。“三角形的內(nèi)角和是180°”我是從書上看到的。

  師:你驗證過了嗎?

  生:沒有。

  師:三角形的內(nèi)角和是不是180°?咱們還沒有認(rèn)真地研究過,接下來,我們就一起來研究三角形的內(nèi)角和。

  設(shè)計意圖:“我們已經(jīng)認(rèn)識了三角形,關(guān)于三角形你知道什么?”課一開始,教師就設(shè)計了一個空間容量比較大的問題,旨在讓學(xué)生自主復(fù)習(xí)三角形的有關(guān)知識,引出三角形的內(nèi)角概念。然后創(chuàng)設(shè)一個能激發(fā)學(xué)生探究欲望的問題:“能不能畫出一個含有兩個直角或兩個鈍角的三角形呢?”有的.學(xué)生通過動手畫,發(fā)現(xiàn)一個三角形中不可能有兩個直角或兩個鈍角;有的學(xué)生認(rèn)為三角形的內(nèi)角和是180°,兩個直角的和已是180°,所以不可能。這種認(rèn)識可能來自于書本,也可能來自于家長的輔導(dǎo),但學(xué)生對于“三角形的內(nèi)角和是180°”的體驗是沒有的,學(xué)生對所學(xué)的知識僅僅還是一種機械的識記,因此“三角形的內(nèi)角和是否為180°”就成了學(xué)生急切需要探究的問題。

  活動二:自主探究

  師:請同學(xué)們拿出課前準(zhǔn)備的材料,自己想辦法驗證三角形的內(nèi)角和是不是180。?

  學(xué)生動手操作驗證。

  師:請大家靜靜地思考1分鐘,將剛才的實驗過程在腦中梳理一下。現(xiàn)在請把自己的研究過程、結(jié)果跟大家交流一下。

  生1:我是用量角器測量的,我量的是直角三角形:

  90。+ 42。+47。=179。

  生2:我量的也是直角三角形:

  90。+43。+48。=181。

  生3:我量的是銳角三角形:

  32。+65。+83。=180。

  生4:我量的是鈍角三角形:

  120。+32。+30。=182。

  生5:……

  師:看到這些度量結(jié)果,你有什么想法?

  生1:為什么他們測量的結(jié)果會不相同?

  生2:也許我們測量的方法不精確。

  生3:也許我們的量角器不標(biāo)準(zhǔn)。

  生4:也可能三角形的內(nèi)角和不一定都是180°。

  師:是呀,用量角器度量容易出現(xiàn)誤差,但這些度量的結(jié)果還是比較接近的,都在180°左右。

  師:有沒有沒使用量角器來驗證的呢?

  生:我是用三個相同的三角形來接的(如圖)!1、∠2、∠3剛好拼成一個平角,所以三角形的內(nèi)角和是180°。

  師:你怎么知道這三個角拼成的大角剛好是一個平角呢?有辦法驗證嗎?

  生1:用量角器測量不就知道了嗎?

  生2:用三角板的兩個直角去拼來驗證。

  生3:因為平角的兩條邊成一條直線,所以可用直尺來檢驗。

  生4:再拿三個相同的三角形按上面的方法進(jìn)行拼,這樣6個相同的三角形,中間就可以拼出一個周角(如圖),周角的一半剛好是平角。

  師:通過剛才的驗證,可以說明∠1、∠2、∠3拼成的角是平角,那么銳角三角形的三個內(nèi)角能拼成一個平角嗎?鈍角三角形呢?請大家試一試。師:如果現(xiàn)在只有一個三角形怎么辦?

  生:我是將銳角三角形的三個角分別撕下來,拼成一個平角,平角是180°所以銳角三角形的內(nèi)角和是180°。

  師:直角三角形、鈍角三角形行嗎?來試一試。

  生1:老師,不剪下三角形的三個內(nèi)角也可以驗證。只要將三角形的三個內(nèi)角折拼在一起,看看是不是拼成一個平角就可以了。

  師:大家就用折拼的方法試一試。

  學(xué)生操作驗證。

  師:剛才我們除了用量角器度量的方法,同學(xué)們還想出了其他一些方法:用三個相同的三角形拼、剪拼、折拼等方法,這些方法形式上看起來不一樣,其實有共同點嗎?

  生:都是將三角形的三個內(nèi)角拼在一起,組成一個平角來驗證三角形的內(nèi)角和是不是180°。

  師:通過上面的實驗,你 可以得出什么結(jié)論?

  生:三角形的內(nèi)角和是180。

  師:是任意三角形嗎?剛才我們才驗證了幾個三角形呀?怎么就可以說是任意三角形呢?

  生:三角形按角分只有銳角三角形、直角三角形、鈍角三角形三種,剛才我們都驗證過了。

  師:(出示一個大三角形)它的內(nèi)角和是多少度?如果將這個三角形縮小(出示一個小三角形),它的內(nèi)角和又是多少度?為什么?

  生:三角形的三條邊縮短了,可它的三個角的大小沒變,所以它的內(nèi)角和還是180。

  師生小結(jié):三角形不論形狀、大小,它的內(nèi)角和總是180。

  設(shè)計意圖:學(xué)生明確探究主題后,教師只為學(xué)生提供探究所需的材料,而不直接給出實驗的方法和程序,激勵學(xué)生自己想辦法實驗驗證,獲得結(jié)論。然后引導(dǎo)學(xué)生交流、評價、反思與提升。驗證過程中較好地體現(xiàn)了解決同一問題思維方法,驗證策略的多樣性。促進(jìn)了學(xué)生發(fā)散思維能力的提高,提升了思維品質(zhì)。

  活動三:應(yīng)用拓展

  1、計算下面各個三角形中的∠B的度數(shù)。

  師:(圖2)怎樣求∠B?

  生:180。-90。-55。=35。

  師:還有不同的解法嗎?

  生:180!2-55。=35。,因為三角形的內(nèi)角和是180。,其中一個直角是90。,另外兩個銳角的和剛好是90。

  師:是不是任意一個直角三角形的兩銳角和都是90。呢?能驗證一下嗎?

  生:因為任意三角形的內(nèi)角和是180。,其中一個直角是90。,所以其他兩個銳角的和肯定是90。

  師:有沒有反對意見或表示懷疑的?從中我們可以發(fā)現(xiàn)一條什么規(guī)律?

  生:直角三角形的兩個銳角和是90。

  2、一個等腰三角形頂角是90。,兩個底角分別是多少度?

  3、等邊三角形的每個內(nèi)角是多少度?

  師:現(xiàn)在你能解決為什么一個三角形里不能有兩個直角或兩個鈍角嗎?

  生:略。

  師:通過這節(jié)課的學(xué)習(xí),你還有什么疑問或還想研究什么問題?

  生:三角形有內(nèi)角和,三角形有外角和嗎?

  師:你知道三角形的外角在哪兒嗎?三角形有外角和,它的外角和是多少度呢?有興趣的同學(xué)請課后研究。

  課末,教師激勵學(xué)生提出新的問題:通過這節(jié)課的學(xué)習(xí),你還有什么疑問或者還想研究什么問題?培養(yǎng)學(xué)生的問題意識,同時讓學(xué)生帶著問題走出教室,拓展學(xué)生數(shù)學(xué)學(xué)習(xí)的時間和空間。

三角形內(nèi)角和教學(xué)設(shè)計8

  一、教學(xué)目標(biāo):

  1、理解掌握三角形內(nèi)角和是180°,并運用這一性質(zhì)解決一些簡單的問題。

  2、通過直觀操作的方法,引導(dǎo)學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實驗活動中,體驗探索的過程和方法。

  3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗。

  二、教學(xué)重、難點:

  重點:探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。

  難點:運用三角形內(nèi)角和等于180°的性質(zhì)解決一些實際問題。

  教具:課件、三角形若干。

  學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

  三、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  我們已經(jīng)學(xué)過了三角形的知識,我們來復(fù)習(xí)一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細(xì)聽它們都說了什么?

  教師放課件。

  課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

  都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學(xué)生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。

 。ò鍟n題:三角形內(nèi)角和)

 。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點。

 。1)檢查作業(yè),并提出要求:

  昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。

  小組活動記錄表

  小組成員的姓名

  三角形的形狀

  每個內(nèi)角的度數(shù)

  三角形內(nèi)角的和

 。ㄒ螅禾钔瓯砗螅埿〗M成員仔細(xì)觀察你發(fā)現(xiàn)了什么?)

 、谛〗M合作。

  會使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。

  各組長進(jìn)行匯報。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。

  師:實際上,三角形三個內(nèi)角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。

  2、驗證推測。

  那么同學(xué)們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學(xué)們在下面操作進(jìn)行體驗,再用課件演示把三個內(nèi)角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學(xué)生也動手試一試。

  通過我們的驗證我們可以得出三角形的內(nèi)角和是180°。

  板書:(三角形內(nèi)角和等于180°。)

  3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的`三角形內(nèi)角和是180°做系統(tǒng)的整理。)

  4、同學(xué)們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)

  出示書28頁,試一試第3題,并講解。

  說明:在直角三角形中一個銳角等于30°,求另一個銳角。

  生獨立做,再訂正格式、以及強調(diào)不要忘記寫度。

  小結(jié):同學(xué)們有沒有不明白的地方?如果沒有我們來做練習(xí)。

 。ㄈ╈柟叹毩(xí),拓展應(yīng)用

  1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

  完成,并填在書上。講一講直角三角形還有什么解法。

  2、出示29頁第2題。

  說明:一個鈍角三角形說:我的兩個銳角之和大于90°。

  一個直角三角形說:我的兩個銳角之和正好等于90°。讓學(xué)生判斷。

  3、畫一畫:

  出示四邊形和六邊形。運用三角形內(nèi)角和是180°計算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?

  三角形內(nèi)角和180度是科學(xué)家帕斯卡12歲時發(fā)現(xiàn)的。我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

 。ㄋ模┱n堂總結(jié)

  讓學(xué)生說說在這節(jié)課上的收獲!

三角形內(nèi)角和教學(xué)設(shè)計9

  【設(shè)計理念】

  新課標(biāo)重視讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,要求教師創(chuàng)設(shè)有效的問題情境激發(fā)學(xué)生的參與欲望,提供足夠的時間和空間讓學(xué)生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學(xué)生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數(shù)學(xué)問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  【教材內(nèi)容】新人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書四年級下冊數(shù)學(xué)第67頁例6、“做一做”及練習(xí)十六的第1、2、3題。

  【教材分析】

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學(xué)的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的.空間和時間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、拼等活動,讓學(xué)生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

  【學(xué)情分析】

 。、在學(xué)習(xí)本課時,學(xué)生已經(jīng)有了探索三角形內(nèi)角和的知識基礎(chǔ):知道直角和平角的度數(shù),會用量角器度量角的度數(shù);認(rèn)識長方形、正方形,知道他們的四個角都是直角;認(rèn)識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

  2、已經(jīng)有一部分學(xué)生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

  【教學(xué)目標(biāo)】

  1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。

  2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。

  3.在參與數(shù)學(xué)學(xué)習(xí)活動的過程中,獲得成功的體驗,感受數(shù)學(xué)探究的嚴(yán)謹(jǐn)與樂趣。

  【教學(xué)重點】

  探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。

  【教學(xué)難點】驗證“三角形的內(nèi)角和是180°”。

  【教(學(xué))具準(zhǔn)備】

  多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學(xué)步驟】

  一、復(fù)習(xí)舊知 引出課題

  1、你已經(jīng)知道有關(guān)三角形的哪些知識?

  2、出示課題:三角形的內(nèi)角和

  設(shè)計意圖:也自然導(dǎo)入新課。

  二、提出問題 引發(fā)猜想

  1、提出問題:看到這個課題,你有什么問題想問的?

  預(yù)設(shè):(1)三角形的內(nèi)角指的是哪些角? (2)三角形的內(nèi)角和是什么意思?

  (3)三角形的內(nèi)角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

  設(shè)計意圖:提出一個問題比解決一個問題更重要。課始在復(fù)習(xí)三角形已學(xué)知識后,引導(dǎo)學(xué)生提出有關(guān)三角形的新問題,讓學(xué)生學(xué)習(xí)自己想研究的內(nèi)容,無疑激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的問題意識。由于學(xué)生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學(xué)生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結(jié)論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內(nèi)角和是180度呢?

  預(yù)設(shè): ①量算法 ②剪拼法 ③折拼法等

 。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結(jié):剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結(jié)論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。

  6、形成結(jié)論:任意三角形的內(nèi)角和是180 °。

  設(shè)計意圖:《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進(jìn)行全班交流,給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結(jié)論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動中積累基本的數(shù)學(xué)活動經(jīng)驗,為后續(xù)的學(xué)習(xí)提供了經(jīng)驗支撐。

  四、應(yīng)用結(jié)論 解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風(fēng)箏的頂角是多少度?

  3、辨析訓(xùn)練,完善結(jié)論。

  五、課堂總結(jié),歸納研究方法

  今天這節(jié)課你學(xué)到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學(xué)的方法繼續(xù)研究四邊形的內(nèi)角和。

  七、板書設(shè)計:

  三角形的內(nèi)角和

  猜測: 三角形的內(nèi)角和是180°?

  驗證: 量 拼

  結(jié)論: 任意三角形的內(nèi)角和是180°

三角形內(nèi)角和教學(xué)設(shè)計10

  【教材分析】

  《三角形內(nèi)角和》是北師大版《數(shù)學(xué)》四年級下冊的內(nèi)容。是在學(xué)生學(xué)習(xí)了三角形的概念及特征之后進(jìn)行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎(chǔ),因此,掌握“三角形的內(nèi)角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學(xué)生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了“試一試”,“練一練”的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。

  【學(xué)生分析】

  經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學(xué)產(chǎn)生了濃厚的興趣。1.知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進(jìn)行簡單的微機操作。

  【學(xué)習(xí)目標(biāo)】

  知識目標(biāo):掌握三角形內(nèi)角和是180度這一規(guī)律,并能實際應(yīng)用。

  能力目標(biāo): 培養(yǎng)學(xué)生主動探索、動手操作的能力。培養(yǎng)學(xué)生收集、整理、歸納信息的能力。使學(xué)生養(yǎng)成良好的.合作習(xí)慣。

  情感目標(biāo): 讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。

  【教學(xué)過程】

  一、 情景激趣,質(zhì)疑猜想。

  播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。

  鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大。”銳角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內(nèi)角和并不比你小。”直角三角形說:“別爭了,三角形的內(nèi)角和都是180°。我們的內(nèi)角和是一樣大的!

  師:想一想,什么是三角形的三個內(nèi)角的和。

  生:三角形的三個內(nèi)角的度數(shù)和。

  師:同學(xué)們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

  學(xué)生進(jìn)行猜想,自由發(fā)言。

 。ㄔO(shè)計意圖:教師借助多媒體技術(shù)創(chuàng)設(shè)問題情境,架起數(shù)學(xué)學(xué)習(xí)與現(xiàn)實生活,抽象數(shù)學(xué)與具體問題之間的橋梁,激發(fā)了學(xué)生的學(xué)習(xí)興趣。鼓勵學(xué)生主動質(zhì)疑猜想是培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學(xué)都猜直角三角形說的對。三角形的三個內(nèi)角的和都是 180°,你能設(shè)法驗證這個猜想嗎?

  生1:能。我量出三角形的三個內(nèi)角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。

  生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。

  生3:我把三角形的三個角撕下來,拼一拼是否180°。

  生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。

  ……

  師:上面你們說了不少的驗證猜想的方法,請大家用準(zhǔn)備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W(xué)生把三角形的三個內(nèi)角分別標(biāo)上∠1、∠2、∠3,以免在剪拼時把內(nèi)角搞混了。)

  學(xué)生邊實驗邊整理信息,完成實驗報告單后,學(xué)習(xí)小組內(nèi)進(jìn)行交流討論。

 。ㄔO(shè)計意圖:驗證猜想為學(xué)生提供了“做數(shù)學(xué)”的機會,讓每個學(xué)生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學(xué)生在操作中自主探究數(shù)學(xué)知識的產(chǎn)生發(fā)展過程。驗證自己的猜想,鼓勵學(xué)生用不同的方法進(jìn)行驗證,促進(jìn)學(xué)生創(chuàng)新能力的發(fā)展。)

  三、交流評價,歸納結(jié)論。

  學(xué)生操作驗證,完成實驗報告單后,利用投影儀展示學(xué)生填寫的實驗報告單。

  實驗報告單

  實驗名稱

  三角形內(nèi)角和

  實驗?zāi)康?/p>

  探究三角形內(nèi)角和是多少度。

  實驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的方法

  我的發(fā)現(xiàn)

  我的表現(xiàn)

  自評

  互評

  學(xué)生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學(xué)生的閃光點及時進(jìn)行表揚和鼓勵。

  師生共同歸納,得出結(jié)論:

  三角形內(nèi)角和等于180°

 。ㄔO(shè)計意圖:各學(xué)習(xí)小組匯報自己的驗證過程,展示探究的成果。對學(xué)生探索發(fā)現(xiàn)的方法、策略進(jìn)行總結(jié)歸納,集思廣益,取長補短達(dá)到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習(xí),鞏固創(chuàng)新。

 、僬n件出示:

  師:這個三角形是什么三角形?知道幾個內(nèi)角的度數(shù)?

  生:直角三角形,知道一個角是30°,還有一個角是90°!螦=90°-30°=60°。

  師:根據(jù)今天所學(xué)的知識,誰能求出A的度數(shù)?大家自己試一試。

  學(xué)生做完后反饋講評時讓學(xué)生說說自己的方法。

  生1:用三角形內(nèi)角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

 、趯W(xué)生完成完成P29的第一題。

  引導(dǎo)學(xué)生按照前面的方法獨立完成,教師巡視,集體訂正。

 、鄄乱徊氯切蔚牧硗鈨蓚角可能各是多少度。

  同桌同學(xué)互相說一說。(答案不唯一)

 、苄〗M操作探究活動。

  讓學(xué)生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

  方 法

  四邊形內(nèi)角和

  用量角器量出每個內(nèi)角的度數(shù),并相加。

  把四邊形四個角剪下來,拼在一起。

  把四邊形分為兩個三角形。

  填表后讓學(xué)生想一想、互相說一說,四邊形內(nèi)角和是多少度?

 。ㄔO(shè)計意圖:引導(dǎo)學(xué)生將探究學(xué)習(xí)活動中所獲得的結(jié)論經(jīng)驗和方法運用于探索解決簡單的實際問題。組織學(xué)生參與具有趣味性、操作性和開放性的練習(xí)活動,讓學(xué)生在鞏固練習(xí)中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)

三角形內(nèi)角和教學(xué)設(shè)計11

  教學(xué)內(nèi)容

  人教版小學(xué)數(shù)學(xué)第八冊第五單元第85頁例5

  任務(wù)分析

  教材分析: 《三角形的內(nèi)角和》是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(數(shù)學(xué))四年級下冊第五單元《三角形》中的一個教學(xué)內(nèi)容。這部分內(nèi)容是在學(xué)生學(xué)習(xí)了角的度量,角的分類,三角形的認(rèn)識,三角形的分類的基上進(jìn)行教學(xué)的。它是三角形的一個重要性質(zhì),有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)的基礎(chǔ)。教材通過實際操作,引導(dǎo)學(xué)生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內(nèi)角和都是180度。教材在編寫上也深刻的體現(xiàn)出了讓學(xué)生探究的特點,通過動手操作探究發(fā)現(xiàn)三角形內(nèi)角和為180度。教學(xué)內(nèi)容的.核心思想體現(xiàn)在讓學(xué)生經(jīng)歷猜想—驗證—結(jié)論的過程,來認(rèn)識和體驗三角形內(nèi)角和的特點。

  學(xué)情分析:通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。在四年級上冊《角的度量》的學(xué)習(xí)中,學(xué)生有接觸到兩把三角尺的內(nèi)角和是180°;并在相關(guān)的補充習(xí)題和數(shù)學(xué)練習(xí)冊的練習(xí)中,也有要求測量任意三角形的三個內(nèi)角的度數(shù)并求出它們的和的練習(xí),很多學(xué)生已經(jīng)知道了三角形的內(nèi)角和是180°。但是要真正理解和掌握需要進(jìn)行驗證,因此,學(xué)生在這節(jié)課上的主要任務(wù)是通過實驗操作驗證三角形的內(nèi)角和是180°。

  教學(xué)目標(biāo)

  1、通過實驗、操作、推理歸納出三角形內(nèi)角和是180°。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形未知角的度數(shù)并運用解決實際生活問題。

  3、通過拼擺,感受數(shù)學(xué)的轉(zhuǎn)化思想。

  教學(xué)重點

  探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”。

  教學(xué)難點

  驗證三角形的內(nèi)角和是180度。

  教學(xué)準(zhǔn)備

  多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學(xué)過程

  一、復(fù)習(xí)舊知,學(xué)習(xí)鋪墊

  1、一個平角是多少度?等于幾個直角?

  2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規(guī)律

  1、說明三角形的三個內(nèi)角和

  說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

  師(指出):三角形的這三個角叫做三角形的三個內(nèi)角,這三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。

  板書課題:“三角形的內(nèi)角和”。

  揭示課題:今天我們一起來探究三角形的內(nèi)角和有什么規(guī)律。

  2、探究三角形的內(nèi)角和規(guī)律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內(nèi)角和各是多少度?

  生討論匯報,并引導(dǎo)學(xué)生發(fā)現(xiàn):三角形的內(nèi)角和接近180°。

  師:三角形的內(nèi)角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?

  學(xué)生預(yù)設(shè):有學(xué)生可能會說出三角形的內(nèi)角和就是180°,這時老師可以提問,為什么就是180°?我們要進(jìn)行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導(dǎo):我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內(nèi)角和有誤差。能不能換一種方法減少度量的次數(shù),減少誤差呢?

  生可能很難想到,可以提示學(xué)生:把三個內(nèi)角拼成一個角就只要量一次角。讓我們一起動手做一做

  如圖:

 。1)

  銳角的三個內(nèi)角拼成了一個平角,引導(dǎo)學(xué)生說出:銳角三角形的內(nèi)角和是180°.

 。2)

  讓學(xué)生小組合作用同樣的方法,發(fā)現(xiàn):直角三角形的內(nèi)角和也是180°.

 。3)

  讓學(xué)生獨立用同樣的方法,發(fā)現(xiàn):鈍角三角形的內(nèi)角和也是180°.

  引導(dǎo)學(xué)生歸納:三角形的內(nèi)角和是180°。

  是不是所有的三角形的內(nèi)角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

  板書:三角形的內(nèi)角和是180°

  三、鞏固練習(xí),應(yīng)用規(guī)律

  1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數(shù)嗎?

  學(xué)生獨立完成,并說出原因:因為三角形的內(nèi)角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

  學(xué)生分析:因為等腰三角形的兩個底角相等,又因為三角形的內(nèi)角和是180°,所以

 。180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習(xí),深化規(guī)律

  1、求出下面各角的度數(shù)。

  (1) (2)

  2、判斷

 。1)三角形任意兩個內(nèi)角的和大于第三個角。( )

 。2)銳角三角形任意兩個內(nèi)角的和大于直角。( )

 。3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

  ( ) ( )

  五、課堂小結(jié),分享提升

  1、談?wù)勥@節(jié)課你有什么收獲?

  2、課后思考題

  三角形的內(nèi)角和是180°,那長方形、正方形的內(nèi)角和呢?(根據(jù)三角形的內(nèi)角和是180°求,參考課本88頁第12題,完成89頁16題)

  板書設(shè)計

三角形內(nèi)角和教學(xué)設(shè)計12

  一、說教材

  北師版八年級下冊第六章《證明一》,是在前面對幾何結(jié)論已經(jīng)有了一定的直觀認(rèn)識的基礎(chǔ)上編排的,而前幾冊對有關(guān)幾何結(jié)論都曾進(jìn)行過簡單的說理,本章內(nèi)容則嚴(yán)格給出這些結(jié)論的證明,并要求學(xué)生掌握證明的一般步驟及書寫表達(dá)格式!度切蝺(nèi)角和定理的證明》則是對前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ)。

  二、說目標(biāo)

  1.知識目標(biāo):掌握“三角形內(nèi)角和定理的證明”及其簡單的應(yīng)用。

  2.能力目標(biāo)培養(yǎng)學(xué)生的數(shù)學(xué)語言表達(dá)、邏輯推理、問題思考、組內(nèi)及組間交流、動手實踐等能力。

  3.情感、態(tài)度、價值觀:

  在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生體會獲得知識的成就感及與他人合作的樂趣,以增強其數(shù)學(xué)學(xué)習(xí)的自信心。

  4.教學(xué)重點、難點

  重點:三角形的內(nèi)角和定理的證明及其簡單應(yīng)用。

  難點:三角形的內(nèi)角和定理的證明方法的討論。

  三、說學(xué)校及學(xué)生現(xiàn)實情況

  我校是藍(lán)田縣一所普通初中,四面非山即嶺,距藍(lán)田縣城四十里之遙。但由于國家對西部教育的大力支持,學(xué)校有遠(yuǎn)程多媒體網(wǎng)絡(luò)教室,為師生提供了良好的學(xué)習(xí)硬件環(huán)境。我校學(xué)生幾乎全部來自本鎮(zhèn)農(nóng)村,而我所教授的八年級四班學(xué)生,大多家庭貧苦,所以學(xué)習(xí)認(rèn)真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。

  四、說教法

  根據(jù)本節(jié)課教學(xué)內(nèi)容特點,我采用啟發(fā)、引導(dǎo)、探索相結(jié)合的教學(xué)方法,使學(xué)生充分發(fā)揮學(xué)習(xí)主動性、創(chuàng)造性。

  五、說教學(xué)設(shè)計

  〈一〉、創(chuàng)設(shè)情景,直入主題

  一堂新課的引入是教師與學(xué)生活動的開始,而一個成功的.引入,可使學(xué)生破除畏難心理,對知識在短時間內(nèi)產(chǎn)生濃厚的興趣,接下來的教學(xué)活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學(xué)生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學(xué)習(xí)一個熟悉的結(jié)論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學(xué)生投入新課。

  〈二〉、交流對話,引導(dǎo)探索

  1、巧妙提問,合理引導(dǎo)

  證明思想的引入時,問:同學(xué)們,七年級時如何得到此結(jié)論?(留一定時間讓他們討論、交流、達(dá)成共識)學(xué)生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學(xué)生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導(dǎo)了證明的方向,又激發(fā)了學(xué)生的學(xué)習(xí)興趣。接下來學(xué)生做題,我巡視。同時讓一學(xué)生板演。

  2、恰當(dāng)示范,培養(yǎng)學(xué)生正確的書寫能力

  在學(xué)生做完之后,我與他們一道分析板演同學(xué)證明是否合理,并利用多媒體給出正確書寫方法。

  3、一題多解,放手讓學(xué)生走進(jìn)自主學(xué)習(xí)空間

  正因為學(xué)生的預(yù)習(xí),所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學(xué)生思考,繼而熱烈討論,此時,我又走到學(xué)生中去,對有困難的學(xué)生多加關(guān)注和指導(dǎo),不放棄任何一個,同時,借此機會增進(jìn)教師與學(xué)困生之間的情誼,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。最后,請有新方法的同學(xué)敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

  4、展示歸納,合理演繹

  利用多媒體展示三角形內(nèi)角和定理的幾種表達(dá)形式,以促其學(xué)以致用。

  5、反饋練習(xí)

  用隨堂練習(xí)來鞏固學(xué)生所學(xué)新知,另一方面進(jìn)一步提高學(xué)生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學(xué)效果。

  〈三〉、課堂小結(jié)

  1 采用讓學(xué)生感性的談?wù)J識,談收獲。設(shè)計問題:

  2(1)、本節(jié)課我們學(xué)了什么知識?

  (2)、你有什么收獲?

  目的是發(fā)揮學(xué)生主體意識,培養(yǎng)其語言概括能力。

  六、說教學(xué)反思

  本節(jié)課主要是以嚴(yán)謹(jǐn)?shù)倪壿嬜C明方法,驗證三角形內(nèi)角和等于180度。讓學(xué)生充分體會有理有據(jù)的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點。自主學(xué)習(xí)、合作交流是新課程理念,也是我本節(jié)課的設(shè)計意圖。從學(xué)生課堂表現(xiàn)可以看出,教學(xué)效果良好。而學(xué)生的一些出乎意料的做法讓我倍感驚喜!把學(xué)生還給課堂,把課堂還給學(xué)生,也是我一貫的做法。

三角形內(nèi)角和教學(xué)設(shè)計13

  教學(xué)目標(biāo):

  1、通過“算一算,拼一拼,折一折”等操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。

  2、在操作活動中,培養(yǎng)學(xué)生的合作能力、動手實踐能力,發(fā)展學(xué)生的空間觀念。并運用新知識解決問題。

  3、使學(xué)生有科學(xué)實驗態(tài)度,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣,體驗數(shù)學(xué)學(xué)習(xí)成功的喜悅。

  教學(xué)重點:

  探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。

  教學(xué)難點:

  對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。

  教具學(xué)具準(zhǔn)備:

  課件、學(xué)生準(zhǔn)備不同類型的三角形各一個,量角器。

  教學(xué)過程:

  一、創(chuàng)設(shè)情景,引出問題

  1、課件出示三角形的爭吵畫面

  銳角三角形:我的內(nèi)角和度數(shù)最大。

  直角三角形:不對,是我們直角三角形的內(nèi)角和最大。

  鈍角三角形:你們別吵了,還是鈍角三角形的內(nèi)角和最大。

  師:此時,你想對它們說點什么呢?

  2、引出課題。

  師:看來三角形里角一定藏有一些奧秘,這節(jié)課我們就來研究有關(guān)三角形角的.知識“三角形內(nèi)角和”。(板書課題)

  二、探究新知

  1、三角形的內(nèi)角、內(nèi)角和

 。1)什么是三角形內(nèi)角(課件)

  三角形里面的三個角都是三角形的內(nèi)角。為了方便研究,我們把每個三角形的3個內(nèi)角分別標(biāo)上∠1、∠2、∠3。

  (2)三角形內(nèi)角和(課件)

  師:內(nèi)角和指的是什么?

  生:三角形的三個內(nèi)角的度數(shù)的和,就是三角形的內(nèi)角和。

  2、看一看,算一算。

  師:算一算兩個三角尺的內(nèi)角和是多少度?(課件)

  學(xué)生計算

  師:是不是所有的三角形的內(nèi)角和都是180°呢?你能肯定嗎?

  (預(yù)設(shè))師:大家意見不統(tǒng)一,我們得想個辦法驗證三角形的內(nèi)角和是多少?可以用什么方法驗證呢?

  3、操作驗證:小組合作。

  選1個自己喜歡的三角形,選喜歡的方法進(jìn)行驗證。

 。ɡ蠋熓紫葹閷W(xué)生提供充分的研究材料,如三種類型的三角形若干個(小組之間的三角形大小都不相同),剪刀,量角器,白紙,直尺等,以及充裕的時間,保證學(xué)生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

  4、學(xué)生匯報。

  (1)教師:匯報的測量結(jié)果,有的是180°,有的不是180°,為什么會出現(xiàn)這種情況?

  師:有沒有別的方法驗證。

 。2)剪拼

  a、學(xué)生上臺演示。

  B、請大家四人小組合作,用他的方法驗證其它三角形。

  C、展示學(xué)生作品。

  D、師展示。

 。3)折拼

  師:有沒有別的驗證方法?

  師:我在電腦里收索到拼和折的方法,請同學(xué)們看一看他是怎么拼,怎么折的(課件演示)。

 。ü膭顚W(xué)生積極開動腦筋,從不同途徑探究解決問題的方法,同時給予學(xué)生足夠的時間和空間,不斷讓每個學(xué)生自己參與,而且注重讓學(xué)生在經(jīng)歷觀察、操作、分析、推理和想像活動過程中解決問題,發(fā)展空間觀念和論證推理能力。)

  師:此時,你想對爭論的三個三角形說些什么呢?

  5、小結(jié)。

  三角形的內(nèi)角和是180度。

  三、解決相關(guān)問題

  1、在能組成三角形的三個角后面畫“√”(課件)

  2、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。(課件)

  3、一個等腰三角形的風(fēng)箏,它的一個底角是70°,他的頂角是多少度?(課件)

  四、練習(xí)鞏固

  1、看圖,求三角形中未知角的度數(shù)。(課件)

  2、求三角形各個角的度數(shù)。(課件)

  五、總結(jié)。

  師:這節(jié)課你有什么收獲?

  六、板書設(shè)計:

  三角形的內(nèi)角和是180°

三角形內(nèi)角和教學(xué)設(shè)計14

  教學(xué)要求

  1、通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  3、培養(yǎng)學(xué)生動手動腦及分析推理能力。

  教學(xué)重點

  三角形的內(nèi)角和是180°的規(guī)律。

  教學(xué)難點

  使學(xué)生理解三角形的內(nèi)角和是180°這一規(guī)律。

  教學(xué)用具

  每個學(xué)生準(zhǔn)備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學(xué)過程:

  一、出示預(yù)習(xí)提綱

  1、三角形按角的不同可以分成哪幾類?

  2、一個平角是多少度?1個平角等于幾個直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

  二、展示匯報交流

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

  2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

  3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

  4、指名學(xué)生匯報各組度量和計算的結(jié)果。你有什么發(fā)現(xiàn)?

  5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

  6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

  提示學(xué)生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

  7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

  8、三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)

  9、拿一個銳角三角形紙片試試看,折的`方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)

  10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結(jié)論:三角形的內(nèi)角和是180°。

  12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

  13、出示教材85頁做一做。讓學(xué)生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  課后反思:

  對于三角形的內(nèi)角和,學(xué)生并不陌生,在平時的做題中已經(jīng)涉及到了。可是學(xué)生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進(jìn)行了重點的提示。

三角形內(nèi)角和教學(xué)設(shè)計15

  教學(xué)內(nèi)容:人教版小學(xué)數(shù)學(xué)第八冊第85頁例5及”做一做”

  教學(xué)目標(biāo):

  1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。

  2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想

  3、在探索中體驗發(fā)現(xiàn)的樂趣,增強學(xué)好數(shù)學(xué)的信心、

  教學(xué)重點

  讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。

  教學(xué)難點 :

  驗證所有三角形的內(nèi)角之和都是180°

  教具準(zhǔn)備:多媒體課件。

  學(xué)具準(zhǔn)備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過程:

  一、 設(shè)疑引思

  1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個內(nèi)角的度數(shù)、

  2、 每小組請一位同學(xué)說出自已量的三角形中兩個角的度數(shù)老師迅速”猜出”第三個角的度數(shù)、

  3、 設(shè)問:老師為什么能很快”猜” 出第三個角的度數(shù)呢?

  三角形還有許多奧妙,等待我們?nèi)ヌ剿鳌?導(dǎo)入新課,板書課題>

  二、 探索交流,獲取新知

  1、 量一量:每個學(xué)生將自已剛才量出的三角形的內(nèi)角和的度數(shù)相加,初步得出”三角形的內(nèi)角和是180°”的結(jié)論、

  2、 折一折:將正方形紙沿對角線對折,使之變成兩個完全重合的三角形,發(fā)現(xiàn):一個三角形的內(nèi)角和就是正方形4個角內(nèi)角和的一半,也就是360的.一半,即180度, 初步驗證”三角形的內(nèi)角和是180°”的結(jié)論、

  3、 拼一拼:學(xué)生先動手剪拼所準(zhǔn)備的三角形,進(jìn)一步驗證得出”三角形的內(nèi)角和是180°”的結(jié)論、

  4、 師利用課件演示將一個三角形的三個角拼成一個平角的過程、

  5、 驗證:FLASH演示三種三角形割補過程

  發(fā)現(xiàn)1: 通過把直角三角形割補后,內(nèi)角∠2,∠3 組成了一個()角,等于()度,∠1等于90度。所以直角三角形的內(nèi)角和等于( )度。

  發(fā)現(xiàn)2:通過把鈍角、銳角三角形割補后,三角組成了一個( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內(nèi)角和都是180度。

  6、 小結(jié):剛才能過量一量折一折拼一拼,你發(fā)現(xiàn)了什么?

  生說,師板書:三角形的內(nèi)角和———180°

  三、 應(yīng)用練習(xí),拓展提高

  1、書例5后”做一做”

  思考:為什么不能畫出一個有兩個直角的三角形?(兩個鈍角、一個直角和一個鈍角的三角形?)

  2、下面哪三個角會在同一個三角形中。

 。1)30、60、45、90

  (2)52、46、54、80

  (3)61、38、44、98

  3、走向生活:

 。1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門上了,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?

  (結(jié)合學(xué)生回答進(jìn)行演示:延長兩條邊,交于一點,形成原來的三角形。所以:兩個角確定了,三角形玻璃形狀和大小也就確定了。)

  四 作業(yè):作業(yè)本

  五 全課總結(jié)

  總結(jié):今天這節(jié)課我們研究了三角形的內(nèi)角和,你們學(xué)到了哪些知識,有什么收獲?

  板書設(shè)計:三角形的內(nèi)角和

  三角形的內(nèi)角和———180°

【三角形內(nèi)角和教學(xué)設(shè)計】相關(guān)文章:

三角形內(nèi)角和教學(xué)設(shè)計02-13

《三角形的內(nèi)角和》教學(xué)設(shè)計05-08

《三角形內(nèi)角和》教學(xué)設(shè)計05-03

《三角形內(nèi)角和》教學(xué)設(shè)計范文03-01

《三角形內(nèi)角和》的教學(xué)設(shè)計范文02-07

三角形內(nèi)角和教學(xué)設(shè)計(優(yōu))12-26

(必備)三角形內(nèi)角和教學(xué)設(shè)計12-18

三角形內(nèi)角和教學(xué)設(shè)計范文04-13

《三角形內(nèi)角和》教學(xué)設(shè)計15篇05-08

《三角形內(nèi)角和》教學(xué)設(shè)計(15篇)05-14